Pigment organization and energy transfer dynamics in isolated photosystem I (PSI) complexes from Arabidopsis thaliana depleted of the PSI-G, PSI-K, PSI-L, or PSI-N subunit.

نویسندگان

  • Janne A Ihalainen
  • Poul Erik Jensen
  • Anna Haldrup
  • Ivo H M van Stokkum
  • Rienk van Grondelle
  • Henrik Vibe Scheller
  • Jan P Dekker
چکیده

Green plant photosystem I (PSI) consists of at least 18 different protein subunits. The roles of some of these protein subunits are not well known, in particular those that do not occur in the well characterized PSI complexes from cyanobacteria. We investigated the spectroscopic properties and excited-state dynamics of isolated PSI-200 particles from wild-type and mutant Arabidopsis thaliana plants devoid of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Pigment analysis and a comparison of the 5 K absorption spectra of the various particles suggests that the PSI-L and PSI-H subunits together bind approximately five chlorophyll a molecules with absorption maxima near 688 and 667 nm, that the PSI-G subunit binds approximately two red-shifted beta-carotene molecules, that PSI-200 particles without PSI-K lack a part of the peripheral antenna, and that the PSI-N subunit does not bind pigments. Measurements of fluorescence decay kinetics at room temperature with picosecond time resolution revealed lifetimes of ~0.6, 5, 15, 50, 120, and 5000 ps in all particles. The 5- and 15-ps phases could, at least in part, be attributed to the excitation equilibration between bulk and red chlorophyll forms, though the 15-ps phase also contains a contribution from trapping by charge separation. The 50- and 120-ps phases predominantly reflect trapping by charge separation. We suggest that contributions from the core antenna dominate the 15-ps trapping phase, that those from the peripheral antenna proteins Lhca2 and Lhca3 dominate the 50-ps phase, and that those from Lhca1 and Lhca4 dominate the 120-ps phase. In the PSI-200 particles without PSI-K or PSI-G protein, more excitations are trapped in the 15-ps phase and less in 50- and 120-ps phases, which is in agreement with the notion that these subunits are involved in the interaction between the core and peripheral antenna proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions.

Photosystem I (PSI) of higher plants contains 18 subunits. Using Arabidopsis En insertion lines, we have isolated knockout alleles of the genes psaG, psaH2, and psaK, which code for PSI-G, -H, and -K. In the mutants psak-1 and psag-1.4, complete loss of PSI-K and -G, respectively, was confirmed, whereas the residual H level in psah2-1.4 is due to a second gene encoding PSI-H, psaH1. Double muta...

متن کامل

Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana.

Chloroplasts are central to the provision of energy for green plants. Their photosynthetic membrane consists of two major complexes converting sunlight: photosystem I (PSI) and photosystem II (PSII). The energy flow toward both photosystems is regulated by light-harvesting complex II (LHCII), which after phosphorylation can move from PSII to PSI in the so-called state 1 to state 2 transition an...

متن کامل

Photosystem I lacking the PSI-G subunit has a higher affinity for plastocyanin and is sensitive to photodamage.

PSI-G is an 11 kDa subunit of PSI in photosynthetic eukaryotes. Arabidopsis thaliana plants devoid of PSI-G have a decreased PSI content and an increased activity of NADP(+) photoreduction in vitro but otherwise no obvious phenotype. To investigate the biochemical basis for the increased activity, the kinetic parameters of the reaction between PSI and plastocyanin were determined. PSI-G clearly...

متن کامل

Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Arabidopsis thaliana.

Nonphotochemical quenching (NPQ) is the process that protects the photosynthetic apparatus of plants and algae from photodamage by dissipating as heat the energy absorbed in excess. Studies on NPQ have almost exclusively focused on photosystem II (PSII), as it was believed that NPQ does not occur in photosystem I (PSI). Recently, Ballottari et al. [Ballottari M, et al. (2014) Proc Natl Acad Sci...

متن کامل

Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana

Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 2002